Effect of calibration errors on cosmological parameter estimates

Dragan Huterer University of Michigan

with:

Carlos Cunha (Stanford), Wenjuan Fang (Michigan)

Preliminary results of ongoing work.

Comments are welcome.

Summary of talk

I created an end-to-end pipeline to propagate arbitrary calibration errors into cosmological parameter biases

Summary of findings:

- 1. Calibration breaks statistical isotropy of LSS signal (obvious in retrospect)
- 2. Large-angle errors beyond the monopole dipole, quadrupole, etc are most damaging
- 3. Control at level << 0.1% might be required for DES-type survey and beyond

Scientific Motivation:

why control calibration in LSS measurements

Science motivation #1: dark energy

or

from type Ia supernovae
(e.g. Amanullah et al 2010)
~0.01 mag calibration required

from galaxy clustering (e.g. Eisenstein et al 2005)

 \Rightarrow this work

Science motivation #2: primordial non-Gaussianity

Scale dependence of non-Gaussian halo bias:

$$P_h(k,z) = b^2(k,z) P_{\rm DM}(k,z)$$

Constraints already **500**× better than this departure from Gaussian:

$$b(k) = b_{\rm G} + f_{\rm NL}$$

Current constraints on f_{NL} from LSS (SDSS) are comparable to those from WMAP!

 $\frac{\mathrm{const}}{k^2}$

Non-Gaussianity constraints are special: come from large angular/spatial scales

Review of harmonic description

$$\frac{\delta T}{T}(\theta,\phi) = \sum_{\ell,m} a_{\ell m} Y_{\ell m}(\theta,\phi)$$

Assuming statistical isotropy:

$$\langle a_{\ell m} a_{\ell' m'}^* \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}$$

Getting the alm from observed sky is trivial:

$$(a_{\ell m})^{\text{cut}} = \int_{\text{obs. sky}} \frac{\delta T}{T}(\theta, \phi) Y_{\ell m}^*(\theta, \phi) d\Omega$$

But reconstructing full-sky pattern from cut-sky observations is very hard:

$$(a_{\ell m})^{\text{cut}} = \sum_{\ell' m'} M_{\ell \ell' m m'} (a_{\ell' m'})^{\text{full}} \Rightarrow \mathbf{a}^{\text{full}} = \mathbf{M}^{-1} \mathbf{a}^{\text{cut}}$$
poorly behaved inversion

Approach to modeling calibration errors and results

(True) Galaxy density field:

$$\frac{N(\hat{\mathbf{n}}) - \bar{N}(\hat{\mathbf{n}})}{\bar{N}(\hat{\mathbf{n}})} = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\hat{\mathbf{n}})$$

Calibration defined:

$$N_{\rm obs}(\hat{\mathbf{n}}) = c(\hat{\mathbf{n}})N(\hat{\mathbf{n}})$$

Calibration expanded in spherical harmonics:

$$c(\hat{\mathbf{n}}) = 1 + \sum_{\ell m} c_{\ell m} Y_{\ell m}(\hat{\mathbf{n}})$$

Statistical properties of two fields:

$$\langle a_{\ell m} \rangle = 0; \quad \langle a_{\ell m} a_{\ell m}^* \rangle = \delta_{m m'} \delta_{\ell \ell'} C_{\ell}$$

$$\langle c_{\ell m} \rangle = c_{\ell m}; \quad \langle c_{\ell m} c_{\ell m}^* \rangle = |c_{\ell m}|^2$$

Defining the observed overdensity: t_{lm} coefficients

$$\delta^{\text{obs}}(\hat{\mathbf{n}}) \equiv t(\hat{\mathbf{n}}) = \sum_{\ell m} t_{\ell m} Y_{\ell m}(\hat{\mathbf{n}})$$

Final result for the **observed** power spectrum is:

$$\langle t_{\ell m} t_{\ell' m'}^* \rangle = \frac{1}{(1+\epsilon)^2} \left\{ \underbrace{\delta_{mm'} \delta_{\ell \ell'} C_{\ell} + \left[U_{mm'}^{\ell \ell'} C_{\ell'} + (U_{mm'}^{\ell \ell'})^* C_{\ell} \right] + \sum_{\ell_2 m_2} U_{m_2 m}^{\ell_2 \ell} (U_{m_2 m'}^{\ell_2 \ell'})^* C_{\ell_2} + c_{\ell m} c_{\ell' m'}^*}_{\text{breaks statistical isotropy}} \right\}$$
Cancels effects
of calibration
monopole
True power
Calibration (biases)

where
$$U_{m_2m}^{\ell_2\ell} \equiv \sum_{\ell_1m_1} c_{\ell_1m_1} R_{m_1m_2m}^{\ell_1\ell_2\ell}$$

$$R_{m_1 m_2 m}^{\ell_1 \ell_2 \ell} \equiv (-1)^m \sqrt{\frac{(2\ell_1 + 1)(2\ell_2 + 1)(2\ell + 1)}{4\pi}} \begin{pmatrix} \ell_1 & \ell_2 & \ell \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \ell_1 & \ell_2 & \ell \\ m_1 & m_2 & -m \end{pmatrix}$$

Comments on approach

- Expression on previous page is a numerical headache to evaluate dependences on l, m, l', m', l", m" means naively 10^{18} array elements (for $l \le 1000$) \rightarrow lots of tricks used for speed-up
- This work: assume measurements of isotropic part of power, i.e. $T_1 \equiv \langle |t_{lm}|^2 \rangle$, and treat T_1 - C_1 as bias in observable
- Future work: use "off-diagonal" $\langle t_{lm} t_{l'm'} \rangle$ to *internally correct* for the calibration errors (self-calibrate!)

From biases in observables to biases in cosmological parameters

General guideline:

biases have to be much less than statistical errors:

$$\delta p_i \ll (F^{-1})_{ii}$$

Bias/error ratios per calib error in single multipole

Moreover, this implies even more stringent requirements in magnitudes

$$\frac{\delta N}{N}(\hat{\mathbf{n}}) \equiv c(\hat{\mathbf{n}}) - 1 = \ln(10)s(z)R\delta(E_{B-V})(\hat{\mathbf{n}})$$

$$\sim O(10) \times \delta(E_{B-V})(\hat{\mathbf{n}})$$

what I called 'calibration error' on previous slide

$$s(z) \equiv \left. \frac{d \log_{10} n(z, > m)}{dm} \right|_{m_{\text{max}}}$$

Jim Annis

Peek-Graves 2010 corrections to SFD extinction map

Summary of findings

- 1. Calibration *breaks statistical isotropy* of LSS signal of the galaxy power spectrum, e.g.
- 2. Large-angle errors beyond the monopole dipole, quadrupole, etc are most damaging
- 3. Control at level << 0.1% may be required for DES-type survey and beyond; higher requirements for NG than for dark energy

Backup slides

Non-Gaussianity papers in the past 10 years

of articles with
"Non-Gaussian"
in the title
on the ADS data base

Large-Scale Structure

CMB

Inflation / Theory

non-primordial NG

NG from 3-point correlation function

Commonly used "local" model of NG

$$\Phi = \Phi_G + f_{\rm NL} \left(\Phi_G^2 - \langle \Phi_G^2 \rangle \right)$$

Then the 3-point function is related to f_{NL} via (in k-space)

$$B(k_1, k_2, k_3) \sim f_{\rm NL} [P(k_1)P(k_2) + {\rm perm.}]$$

Current constraint from WMAP: f_{NL}=32±21

Simulations with non-Gaussianity (f_{NL})

- ■Same initial conditions, different f_{NL}
- ■Slice through a box in a simulation N_{part}=512³, L=800 Mpc/h

Does galaxy/halo bias depend on NG?

Bias of dark matter halos

$$P_h(k,z) = b^2(k,z) P_{\rm DM}(k,z)$$

figure credit: Bill Keel

Simulations and theory both say: large-scale bias is scale-independent (theorem if halo abundance is function of local density)

Scale dependence of NG halo bias

Verified using a variety of theoretical derivations and numerical simulations.

Constraints from current data: SDSS

[Future data forecasts for LSS: $\sigma(f_{NL}) \approx O(few)$ at least as good as, and highly complementary to, Planck CMB]

CMB, LSS, and CMB+LSS **forecasts**

$$f_{\rm NL}(k) = f_{\rm NL}(k_*) \left(\frac{k}{k_*}\right)^{n_f}$$

